Program Listing for File MicroBitRadio.cpp#

Return to documentation for file (libraries/codal-microbit-v2/source/MicroBitRadio.cpp)

/*
The MIT License (MIT)

Copyright (c) 2016 British Broadcasting Corporation.
This software is provided by Lancaster University by arrangement with the BBC.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*/

#include "MicroBitRadio.h"
#include "MicroBitDevice.h"
#include "CodalComponent.h"
#include "ErrorNo.h"
#include "CodalFiber.h"
#include "nrf.h"

using namespace codal;

const uint8_t MICROBIT_RADIO_POWER_LEVEL[] = {0xD8, 0xD8, 0xEC, 0xF0, 0xF4, 0xF8, 0xFC, 0x00, 0x03, 0x04};

MicroBitRadio* MicroBitRadio::instance = NULL;

extern "C" void RADIO_IRQHandler(void)
{
    if(NRF_RADIO->EVENTS_READY)
    {
        NRF_RADIO->EVENTS_READY = 0;

        // Start listening and wait for the END event
        NRF_RADIO->TASKS_START = 1;
    }

    if(NRF_RADIO->EVENTS_END)
    {
        NRF_RADIO->EVENTS_END = 0;
        if(NRF_RADIO->CRCSTATUS == 1)
        {
            int sample = (int)NRF_RADIO->RSSISAMPLE;

            // Associate this packet's rssi value with the data just
            // transferred by DMA receive
            MicroBitRadio::instance->setRSSI(-sample);

            // Now move on to the next buffer, if possible.
            // The queued packet will get the rssi value set above.
            MicroBitRadio::instance->queueRxBuf();

            // Set the new buffer for DMA
            NRF_RADIO->PACKETPTR = (uint32_t) MicroBitRadio::instance->getRxBuf();
        }
        else
        {
            MicroBitRadio::instance->setRSSI(0);
        }

        // Start listening and wait for the END event
        NRF_RADIO->TASKS_START = 1;
    }
}

MicroBitRadio::MicroBitRadio(uint16_t id) : datagram(*this), event (*this)
{
    this->id = id;
    this->status = 0;
    this->band  = MICROBIT_RADIO_DEFAULT_FREQUENCY;
    this->power = MICROBIT_RADIO_DEFAULT_TX_POWER;
    this->group = MICROBIT_RADIO_DEFAULT_GROUP;
    this->queueDepth = 0;
    this->rssi = 0;
    this->rxQueue = NULL;
    this->rxBuf = NULL;

    instance = this;
}

int MicroBitRadio::setTransmitPower(int power)
{
    if (power < 0 || power >= MICROBIT_RADIO_POWER_LEVELS)
        return DEVICE_INVALID_PARAMETER;

    // Record our power locally
    this->power = power;

    NRF_RADIO->TXPOWER = (uint32_t)MICROBIT_RADIO_POWER_LEVEL[power];

    return DEVICE_OK;
}

int MicroBitRadio::setFrequencyBand(int band)
{
    if (ble_running())
        return DEVICE_NOT_SUPPORTED;

    if (band < 0 || band > 100)
        return DEVICE_INVALID_PARAMETER;

    // Record our frequency band locally
    this->band = band;

    if ( NRF_RADIO->FREQUENCY != (uint32_t) band && (status & MICROBIT_RADIO_STATUS_INITIALISED))
    {
        // We need to restart the radio for the frequency change to take effect
        NVIC_DisableIRQ(RADIO_IRQn);
        NRF_RADIO->EVENTS_DISABLED = 0;
        NRF_RADIO->TASKS_DISABLE = 1;
        while (NRF_RADIO->EVENTS_DISABLED == 0);

        NRF_RADIO->FREQUENCY = (uint32_t) band;

        // Reenable the radio to wait for the next packet
        NRF_RADIO->EVENTS_READY = 0;
        NRF_RADIO->TASKS_RXEN = 1;
        while (NRF_RADIO->EVENTS_READY == 0);

        NRF_RADIO->EVENTS_END = 0;
        NRF_RADIO->TASKS_START = 1;

        NVIC_ClearPendingIRQ(RADIO_IRQn);
        NVIC_EnableIRQ(RADIO_IRQn);
    }

    return DEVICE_OK;
}

FrameBuffer* MicroBitRadio::getRxBuf()
{
    return rxBuf;
}

int MicroBitRadio::queueRxBuf()
{
    if (rxBuf == NULL)
        return DEVICE_INVALID_PARAMETER;

    if (queueDepth >= MICROBIT_RADIO_MAXIMUM_RX_BUFFERS)
        return DEVICE_NO_RESOURCES;

    // Store the received RSSI value in the frame
    rxBuf->rssi = getRSSI();

    // Ensure that a replacement buffer is available before queuing.
    FrameBuffer *newRxBuf = new FrameBuffer();

    if (newRxBuf == NULL)
        return DEVICE_NO_RESOURCES;

    // We add to the tail of the queue to preserve causal ordering.
    rxBuf->next = NULL;

    if (rxQueue == NULL)
    {
        rxQueue = rxBuf;
    }
    else
    {
        FrameBuffer *p = rxQueue;
        while (p->next != NULL)
            p = p->next;

        p->next = rxBuf;
    }

    // Increase our received packet count
    queueDepth++;

    // Allocate a new buffer for the receiver hardware to use. the old on will be passed on to higher layer protocols/apps.
    rxBuf = newRxBuf;

    return DEVICE_OK;
}

int MicroBitRadio::setRSSI(int rssi)
{
    if (!(status & MICROBIT_RADIO_STATUS_INITIALISED))
        return DEVICE_NOT_SUPPORTED;

    this->rssi = rssi;

    return DEVICE_OK;
}

int MicroBitRadio::getRSSI()
{
    if (!(status & MICROBIT_RADIO_STATUS_INITIALISED))
        return DEVICE_NOT_SUPPORTED;

    return this->rssi;
}

int MicroBitRadio::enable()
{
    // If the device is already initialised, then there's nothing to do.
    if (status & MICROBIT_RADIO_STATUS_INITIALISED)
        return DEVICE_OK;

    // Only attempt to enable this radio mode if BLE is disabled.
    if (ble_running())
        return DEVICE_NOT_SUPPORTED;

    // If this is the first time we've been enable, allocate out receive buffers.
    if (rxBuf == NULL)
        rxBuf = new FrameBuffer();

    if (rxBuf == NULL)
        return DEVICE_NO_RESOURCES;

    // Enable the High Frequency clock on the processor. This is a pre-requisite for
    // the RADIO module. Without this clock, no communication is possible.
    NRF_CLOCK->EVENTS_HFCLKSTARTED = 0;
    NRF_CLOCK->TASKS_HFCLKSTART = 1;
    while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0);

    // Bring up the nrf RADIO module in Nordic's proprietary 1MBps packet radio mode.
    NRF_RADIO->TXPOWER = (uint32_t)MICROBIT_RADIO_POWER_LEVEL[this->power];
    NRF_RADIO->FREQUENCY = (uint32_t)this->band;

    // Configure for 1Mbps throughput.
    // This may sound excessive, but running a high data rates reduces the chances of collisions...
    NRF_RADIO->MODE = RADIO_MODE_MODE_Nrf_1Mbit;

    // Configure the addresses we use for this protocol. We run ANONYMOUSLY at the core.
    // A 40 bit addresses is used. The first 32 bits match the ASCII character code for "uBit".
    // Statistically, this provides assurance to avoid other similar 2.4GHz protocols that may be in the vicinity.
    // We also map the assigned 8-bit GROUP id into the PREFIX field. This allows the RADIO hardware to perform
    // address matching for us, and only generate an interrupt when a packet matching our group is received.
    NRF_RADIO->BASE0 = MICROBIT_RADIO_BASE_ADDRESS;

    // Join the default group. This will configure the remaining byte in the RADIO hardware module.
    setGroup(this->group);

    // The RADIO hardware module supports the use of multiple addresses, but as we're running anonymously, we only need one.
    // Configure the RADIO module to use the default address (address 0) for both send and receive operations.
    NRF_RADIO->TXADDRESS = 0;
    NRF_RADIO->RXADDRESSES = 1;

    // Packet layout configuration. The nrf51822 has a highly capable and flexible RADIO module that, in addition to transmission
    // and reception of data, also contains a LENGTH field, two optional additional 1 byte fields (S0 and S1) and a CRC calculation.
    // Configure the packet format for a simple 8 bit length field and no additional fields.
    NRF_RADIO->PCNF0 = 0x00000008;
    NRF_RADIO->PCNF1 = 0x02040000 | MICROBIT_RADIO_MAX_PACKET_SIZE;

    // Most communication channels contain some form of checksum - a mathematical calculation taken based on all the data
    // in a packet, that is also sent as part of the packet. When received, this calculation can be repeated, and the results
    // from the sender and receiver compared. If they are different, then some corruption of the data ahas happened in transit,
    // and we know we can't trust it. The nrf51822 RADIO uses a CRC for this - a very effective checksum calculation.
    //
    // Enable automatic 16bit CRC generation and checking, and configure how the CRC is calculated.
    NRF_RADIO->CRCCNF = RADIO_CRCCNF_LEN_Two;
    NRF_RADIO->CRCINIT = 0xFFFF;
    NRF_RADIO->CRCPOLY = 0x11021;

    // Set the start random value of the data whitening algorithm. This can be any non zero number.
    NRF_RADIO->DATAWHITEIV = 0x18;

    // Set up the RADIO module to read and write from our internal buffer.
    NRF_RADIO->PACKETPTR = (uint32_t)rxBuf;

    // Configure the hardware to issue an interrupt whenever a task is complete (e.g. send/receive).
    NRF_RADIO->INTENSET = 0x00000008;
    NVIC_ClearPendingIRQ(RADIO_IRQn);
    NVIC_EnableIRQ(RADIO_IRQn);

    NRF_RADIO->SHORTS |= RADIO_SHORTS_ADDRESS_RSSISTART_Msk;

    // Start listening for the next packet
    NRF_RADIO->EVENTS_READY = 0;
    NRF_RADIO->TASKS_RXEN = 1;
    while(NRF_RADIO->EVENTS_READY == 0);

    NRF_RADIO->EVENTS_END = 0;
    NRF_RADIO->TASKS_START = 1;

    // register ourselves for a callback event, in order to empty the receive queue.
    status |= DEVICE_COMPONENT_STATUS_IDLE_TICK;

    // Done. Record that our RADIO is configured.
    status |= MICROBIT_RADIO_STATUS_INITIALISED;

    return DEVICE_OK;
}

int MicroBitRadio::disable()
{
    // Only attempt to enable.disable the radio if the protocol is alreayd running.
    if (ble_running())
        return DEVICE_NOT_SUPPORTED;

    if (!(status & MICROBIT_RADIO_STATUS_INITIALISED))
        return DEVICE_OK;

    // Disable interrupts and STOP any ongoing packet reception.
    NVIC_DisableIRQ(RADIO_IRQn);

    NRF_RADIO->EVENTS_DISABLED = 0;
    NRF_RADIO->TASKS_DISABLE = 1;
    while(NRF_RADIO->EVENTS_DISABLED == 0);

    // deregister ourselves from the callback event used to empty the receive queue.
    status &= ~DEVICE_COMPONENT_STATUS_IDLE_TICK;

    // record that the radio is now disabled
    status &= ~MICROBIT_RADIO_STATUS_INITIALISED;

    return DEVICE_OK;
}

int MicroBitRadio::setGroup(uint8_t group)
{
    if (ble_running())
        return DEVICE_NOT_SUPPORTED;

    // Record our group id locally
    this->group = group;

    // Also append it to the address of this device, to allow the RADIO module to filter for us.
    NRF_RADIO->PREFIX0 = (uint32_t)group;

    return DEVICE_OK;
}

void MicroBitRadio::idleCallback()
{
    // Walk the list of packets and process each one.
    while(rxQueue)
    {
        FrameBuffer *p = rxQueue;

        switch (p->protocol)
        {
            case MICROBIT_RADIO_PROTOCOL_DATAGRAM:
                datagram.packetReceived();
                break;

            case MICROBIT_RADIO_PROTOCOL_EVENTBUS:
                event.packetReceived();
                break;

            default:
                Event(DEVICE_ID_RADIO_DATA_READY, p->protocol);
        }

        // If the packet was processed, it will have been recv'd, and taken from the queue.
        // If this was a packet for an unknown protocol, it will still be there, so simply free it.
        if (p == rxQueue)
        {
            recv();
            delete p;
        }
    }
}

int MicroBitRadio::dataReady()
{
    return queueDepth;
}

FrameBuffer* MicroBitRadio::recv()
{
    FrameBuffer *p = rxQueue;

    if (p)
    {
         // Protect shared resource from ISR activity
        NVIC_DisableIRQ(RADIO_IRQn);

        rxQueue = rxQueue->next;
        queueDepth--;

        // Allow ISR access to shared resource
        NVIC_EnableIRQ(RADIO_IRQn);
    }

    return p;
}

int MicroBitRadio::send(FrameBuffer *buffer)
{
    if (ble_running())
        return DEVICE_NOT_SUPPORTED;

    if (buffer == NULL)
        return DEVICE_INVALID_PARAMETER;

    if (buffer->length > MICROBIT_RADIO_MAX_PACKET_SIZE + MICROBIT_RADIO_HEADER_SIZE - 1)
        return DEVICE_INVALID_PARAMETER;

    // Firstly, disable the Radio interrupt. We want to wait until the trasmission completes.
    NVIC_DisableIRQ(RADIO_IRQn);

    // Turn off the transceiver.
    NRF_RADIO->EVENTS_DISABLED = 0;
    NRF_RADIO->TASKS_DISABLE = 1;
    while(NRF_RADIO->EVENTS_DISABLED == 0);

    // Configure the radio to send the buffer provided.
    NRF_RADIO->PACKETPTR = (uint32_t) buffer;

    // Turn on the transmitter, and wait for it to signal that it's ready to use.
    NRF_RADIO->EVENTS_READY = 0;
    NRF_RADIO->TASKS_TXEN = 1;
    while (NRF_RADIO->EVENTS_READY == 0);

    // Start transmission and wait for end of packet.
    NRF_RADIO->TASKS_START = 1;
    NRF_RADIO->EVENTS_END = 0;
    while(NRF_RADIO->EVENTS_END == 0);

    // Return the radio to using the default receive buffer
    NRF_RADIO->PACKETPTR = (uint32_t) rxBuf;

    // Turn off the transmitter.
    NRF_RADIO->EVENTS_DISABLED = 0;
    NRF_RADIO->TASKS_DISABLE = 1;
    while(NRF_RADIO->EVENTS_DISABLED == 0);

    // Start listening for the next packet
    NRF_RADIO->EVENTS_READY = 0;
    NRF_RADIO->TASKS_RXEN = 1;
    while(NRF_RADIO->EVENTS_READY == 0);

    NRF_RADIO->EVENTS_END = 0;
    NRF_RADIO->TASKS_START = 1;

    // Re-enable the Radio interrupt.
    NVIC_ClearPendingIRQ(RADIO_IRQn);
    NVIC_EnableIRQ(RADIO_IRQn);

    return DEVICE_OK;
}

int MicroBitRadio::setSleep(bool doSleep)
{
    if (ble_running())
        return DEVICE_NOT_SUPPORTED;

    if (doSleep)
    {
        if ( status & MICROBIT_RADIO_STATUS_INITIALISED)
        {
            disable();
            status |= MICROBIT_RADIO_STATUS_DEEPSLEEP_INIT;
        }
        else if ( NVIC_GetEnableIRQ(RADIO_IRQn))
        {
            status |=  MICROBIT_RADIO_STATUS_DEEPSLEEP_IRQ;
            NVIC_DisableIRQ(RADIO_IRQn);
        }
    }
    else
    {
        if ( status & MICROBIT_RADIO_STATUS_DEEPSLEEP_INIT)
        {
            status &= ~MICROBIT_RADIO_STATUS_DEEPSLEEP_INIT;
            enable();
        }
        else if ( status & MICROBIT_RADIO_STATUS_DEEPSLEEP_IRQ)
        {
            status &= ~MICROBIT_RADIO_STATUS_DEEPSLEEP_IRQ;
            NVIC_EnableIRQ(RADIO_IRQn);
        }
    }

    return DEVICE_OK;
}